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This work explores the use of characterization features extracted based on breast-mass contours obtained
by automated segmentation methods, for the classification of masses in mammograms according to their
diagnosis (benign or malignant). Two sets of mass contours were obtained via two segmentation methods
(a dynamic-programming-based method and a constrained region-growing method), and simplified ver-
sions of these contours (modeling the contours as ellipses) were employed to extract a set of six features
designed for characterization of mass margins (contrast between foreground region and background re-
gion, coefficient of variation of edge strength, two measures of the fuzziness of mass margins, a measure
of spiculation based on relative gradient orientation, and a measure of spiculation based on edge-signature
information). Three popular classifiers (Bayesian classifier, Fisher's linear discriminant, and a support
vector machine) were then used to predict the diagnosis of a set of 349 masses based on each of said
features and some combinations of these. The systems (each system consists of a segmentation method, a
featureset, and a classifier) were compared with each other in terms of their performance on the diagnosis
of the set of breast masses. It was found that, although there was a percent difference of about 14% in the
average segmentation quality between methods, this was translated into an average percent difference of
only 4% in the classification performance. It was also observed that the spiculation feature based on edge-
signature information was distinctly better than the rest of the features, although it is not very robust to
changes in the quality of the segmentation. All systems were more efficient in predicting the diagnosis
of benign masses than that of the malignant masses, resulting in low sensitivity and high specificity
values (e.g. 0.6 and 0.8, respectively) since the positive class in the classification experiments is the set of
malignant masses. It was concluded that features extracted from automated contours can contribute to
the diagnosis of breast masses in screening programs by correctly identifying a majority of benign masses.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Breast cancer is the most common form of cancer in the female
population, affecting one of approximately 11 women at some stage
of their life in the Western world [1,2]. As with any form of can-
cer, early detection and diagnosis of breast cancer is one of the
most important factors affecting the possibility of recovery from the
disease. Early diagnosis of breast cancer can be achieved through
mammography screening programs assisted by computers [3]. Over
the past one and a half decades, several researchers have stud-
ied and proposed methods for computer-aided diagnosis (CADx) of

∗ Corresponding author. Tel.: +441517944525; fax: +441517944540.
E-mail addresses: Alfonso.Rojas-Dominguez@liv.ac.uk (A. Rojas Domínguez),

A.Nandi@liv.ac.uk (A.K. Nandi).
1 Supported in part by the National Council of Science and Technology (CONACYT)

of Mexico.

0031-3203/$ - see front matter © 2008 Elsevier Ltd. All rights reserved.
doi:10.1016/j.patcog.2008.08.006

abnormalities related to breast cancer in mammograms. The
objective of CADx systems is to help radiologists in making a recom-
mendation for patient management. CADx systems are used after a
positive detection of a breast abnormality has occurred. If the abnor-
mality is suspected to be malignant, a biopsy must be performed to
confirm or reject this suspicion. Automated methods for diagnosis
of breast masses are still under development. The large variability
in the appearance of breast masses, added to the significant overlap
in the appearance of malignant and benign masses, and the fact that
abnormalities (masses and others) are often occluded or hidden in
dense breast tissue, make both their detection and diagnosis very
difficult.

The ultimate objective of automated methods for classification of
masses is to provide a tentative diagnosis (the final decision is pro-
duced by a human expert) of individual masses, based on their phys-
ical attributes. These methods are incarnations of a generic model of
supervised pattern classification systems. According to this model,
a classifier is presented with features obtained from a selection of
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the objects that are to be classified, in a process known as training.
The trained classifier can later label objects which were not used
in its training, an ability known as generalization. The performance
of classification methods depends on the type and quality of the
features employed to train the classifier. Segmentation of the masses
is almost always necessary for feature extraction, and may have an
impact on the quality of the features obtained. This is because some
of the most important information for the classification of breast
masses is found in the transition region between a mass and the
background tissue surrounding it. If the segmentation of a mass is
of poor quality, in the sense that the boundary between mass and
background is not correctly identified, the classification features may
not be able to capture the important information contained in the
transition region.

The general methodology for diagnosis of breast masses consists
of the following main steps:

(1) Input: region of interest (ROI, portion of a mammogram con-
taining a breast mass).

(2) Segmentation of the breast mass.
(3) Feature extraction.
(4) Classification of the breast mass.
(5) Output: predicted diagnosis of the breast mass.

Each of the steps from (2) to (4) corresponds towhat can be identified
as one main component of a CADx system. In other words, a diagno-
sis system is composed of a segmentation method, a set of features
for classification, and a classifier. For each of these main components
researchers have developed a number of options from which it is
nowadays possible to select particular components and use these
in a modular fashion to build a complete diagnosis system. How-
ever, even when breast cancer classification can be semi-automated,
the involvement of experts in drawing accurate boundaries around
masses is extremely time consuming and is not helpful in the en-
deavor to fully automate breast cancer diagnosis. In this context, the
only way to make a significant advance in computer-aided breast
cancer diagnosis may be to automate the mass-boundary drawing as
well as the classification. Whilst there is a lot of research work pub-
lished in automating classification, very little is available in the way
of generating complex mass boundaries automatically. Attempts to
generate complicated mass boundaries automatically have not been
successful.

The approach adopted in this paper to the problem of automated
diagnosis of masses is not via measures that may strongly depend on
the accuracy of the mass contours (since these require the presence
of an operator to produce such contours), but through the design of
robust features that directly measure appropriate characteristics of
the masses. This is not to say that mass contours are to be forgotten
as a whole, but rather, that contours should only be used as pointers
to the image regions from which effective features can be obtained.
This constitutes a paradigm shift that shows encouraging results.

Spiculation is perhaps the single main indication of the malig-
nancy of a breast mass. Another important indication is the rough-
ness, raggedness, or fuzziness of the mass margins. The objective
of this study is to explore the possibility of employing features de-
signed to measure these characteristics, and extracted from con-
tours obtained in an automated fashion (as opposed to features
extracted from manually obtained contours), for automated anal-
ysis of breast masses in screening mammography. Another objec-
tive is to observe the effect that different segmentation methods (in
terms of the segmentation quality) and different classifiers have on
the systems and on the effectiveness of the classification features.
Identification of the components that have the largest influence on
the systems can indicate what are the areas that require the most
improvement.

In this paper, six features designed to show some degree of ro-
bustness to errors in the location of the mass contours have been
employed in classification experiments. The features were tested in-
dividually and in a number of combinations.

Two segmentation methods were considered in this study. One is
based on dynamic programming (DP), and it is identified by the label
ID2PBT [4], the othermethod is known as constrained region growing
[5,6], and it is identified by the label CRG. The ID2PBT segmentation
algorithm is completely automated. The CRG method used in this
work requires the participation of a user to indicate the size of the
constraint function. This is discussed in Section 3.1.

Three popular classifiers have been employed in the classification
experiments. These classifiers are briefly described in Section 5. A
detailed exposition of these and other classifiers can be found in
Refs. [7–9]. A recent survey of detection and classification of masses
in mammograms, including applications of classifiers can be found
in Ref. [10].

2. Image database

In this work, a set of images selected from the mini-MIAS
database [11] and from the digital database for screening mam-
mography (DDSM) of the University of South Florida [12] are used
for validation of the results. Our test set consists of 349 ROIs (43
from the mini-MIAS database and 306 from the DDSM) containing
circumscribed masses—circumscribed masses are most probably
benign—(150 masses) as well as spiculated and microlobulated
masses—which are considered most probably malignant—(199
masses). The selection of cases included lesions with different de-
grees of subtlety and different sizes (see Fig. 1), from images with
different breast-tissue densities (see Fig. 2), and lesions of benign
and malignant diagnoses. A total of 207 masses have a benign
pathology; the other 142 masses have a malignant pathology. The
ROIs were all adjusted to be 256 × 256 pixels at 200�m per pixel
and 8 bpp (256 gray levels); bicubic interpolation was used when
re-scaling was necessary to preserve uniformity in the images spa-
tial resolution, but no masses larger than the area of 256×256 pixels
were included in the test set. The choice of the ROIs was based on
several factors: very large masses were not included, ROIs with two
or more overlapping masses were not included, masses with calcifi-
cations were not included, etc. Since the effect of the segmentation
algorithms is also of interest, criteria related to the application of
these algorithms were also considered: that the boundaries of the
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Fig. 1. Mass size distribution. Units are in thousands of pixels. The spatial resolution
is 200�m per pixel, therefore, a mass with 1000 pixels has an area approximately
equivalent to that of a circle with a radius of 3.6mm.
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Fig. 2. Breast tissue-density distribution. 1. Entirely fatty, 2. scattered fibroglandular,
3. heterogeneously dense, and 4. extremely dense. Note: the MIAS database considers
only the first three tissue-density categories, the DDSM database considers all four.
The categories are those of the BI-RADS published by the American College of
Radiology [46].

masses were not obstructed (for instance, by the pectoral muscle),
that the boundaries appeared complete (sometimes only a portion
of the mass can be seen in the mammograms), etc. A complete set of
manual segmentations was produced based on the intensity and gra-
dient magnitude of the mammograms and the annotations provided
by the databases. These manually segmented regions were regarded
as ground truth of the boundary of the masses.

3. Segmentation methods

3.1. Constrained region growing

Region growing consists in adding pixels to an initial set, known
as seed, based on predefined criteria for growth [13]. Neighboring
pixels that share similar properties with the seed region are ap-
pended to it, thus creating larger regions. The process is useful for
segmentation of irregularly shaped objects.

While conventional region growing defines the lesion segmenta-
tion based solely on gray-level information (as long as connectivity is
satisfied), researchers have proposed to introduce geometrical infor-
mation to improve the segmentation results. In conventional region
growing, the shape of the region being grown is not constrained in
any way. Thus, the regions being grown can sometimes move into
adjacent structures to the one of the seed location, producing wrong
partitions. The geometrical information, based on prior knowledge
of the general shapes of the objects to be segmented, takes the form
of a constraint function used to prevent the inclusion of pixels that
differ significantly from the reference shape, or that are located away
from the compact region of the object of interest. Pixels with the
same gray level but different locations are modified by an appro-
priate constraint function so that those pixels closer to the seed lo-
cation will now differ from those pixels distant from the seed. The
introduced dissimilarity between close and distant pixels effectively
prevents the region from growing excessively. The resulting segmen-
tation method is known as CRG.

The form and complexity of the constraint function will obviously
have an effect on the effectiveness of the CRG method. In the liter-
ature of segmentation of breast masses, a popular constraint func-
tion is an isotropic Gaussian function centred on the location of the
seed point [5,6]. The choice of this function derives from the prior

knowledge (or assumption) that most mammographic lesions are
approximately circular in shape. The Gaussian function is multiplied
with the ROI before the application of region growing. The effect of
the constraint function is controlled by the variance of the Gaussian
function, �2

c , which is directly related to the size of the objects to be
segmented.

In this paper, data computed beforehand was provided to the
CRG algorithm, so that it could adjust the size of the constraint func-
tion to that required to segment each individual mass in the dataset.
This was done in order to simplify the operation of the segmenta-
tion algorithm and to reduce its processing time. As a consequence,
the CRG algorithm also received some advantage over the ID2PBT
algorithm, which is fully automated.

3.2. DP-based boundary tracing

The technique of DP was first employed for delineation of noisy
contours by Montanari [14], Gerbrands [15], and others. Applications
of DP to the segmentation of medical images soon followed and con-
tinue to appear in the literature [16–21]. At the heart of DP-based
segmentation algorithms is the so-called cost function, which is used
to find the path that most efficiently represents the contour that is
being delineated. The cost function should incorporate all the infor-
mation that characterizes the desired contour; it typically includes
three components related to gradient (edge strength), intensity (gray
level), and shape (and size) of the objects to be segmented [17,18,20].

A geometrical transformation of the ROI to polar-variable repre-
sentation can be employed to rectify the image matrix for reduc-
tion of the number of DP iterations [15]. In this case, the DP-based
method first constructs a local cost function that assigns a cost to
each pixel in the polar-variable representation of a ROI. From the
local cost image, a cumulative cost matrix is obtained where the cu-
mulative cost of each path from the first column to the last column
of the cost image is stored. The contour of the lesion is defined in
the cumulative cost matrix by those pixels that linked together form
the path with the lowest cumulative cost.

In the experiments reported in this paper, a particular instance of
the DP-based segmentation algorithm, labeled ID2PBT has been em-
ployed. The details of the implementation can be found elsewhere
[4]. In summary, the components of the ID2PBT algorithm are ob-
tained as follows:

Edge strength component: pixels with strong edge content are as-
signed a low cost, and vice versa. In order to determine edge strength,
first the local standard deviation of the intensity of pixels is obtained,
producing an image where edges are highlighted. This is then sub-
jected to a refinement procedure by computation of a feature known
as the intrinsic coherence [22,23].

Gray-level component: pixels with gray-level values similar to a
preferred gray level (which corresponds to the boundary of masses)
are given a low cost. The preferred gray level used in the segmen-
tation of a particular mass is calculated by the algorithm based on
estimates of the average gray-level values of the mass and the back-
ground, and on an estimate of the size of the mass.

Shape component: the shape of each particular mass to be seg-
mented is modeled by an ellipse. The parameters of the ellipse (axes
and orientation) are computed by the algorithm based on an estimate
of the boundary of the mass. The pixels on the coordinates given by
such a shape estimate (the particular ellipse found) are given a low
cost. The rest of the pixels are given a higher cost, in proportion to
the deviation of their location from the shape estimate.

The three components above are combined into a total cost func-
tion through a linear combination with weights that are dynamically
adjusted by the ID2PBT algorithm based on the relative agreement of
the components. From this total cost function, the cumulative cost
matrix is computed, and DP is applied to trace the boundary of the
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mass (the path with the lowest cost across the cumulative cost ma-
trix). The operation of the ID2PBT algorithm is fully automated.

4. Features

The features included in this study were all designed or modi-
fied to use as little information as possible from the contour of the
masses, so that an approximate contour (such as one extracted via
an automated segmentation algorithm) can be employed in their
computation. In this way, the features are expected to show some
degree of robustness to errors in the location of the boundary of the
masses (the quality of the segmentation).

The features are:

• Contrast between foreground region and background region (Co).
• Coefficient of variation of edge strength (CVES).
• Measures of fuzziness of mass margins (Fz1 and Fz2).
• Measure of spiculation based on relative gradient orientation

(SpGO).
• Measure of spiculation based on edge-signature information (SpSI).

4.1. Selection of the approximate mass-boundary region

In order to obtain the features described in this work, a set of
simplified contours of the breast masses is first produced. These
simplified contours are ellipses that approximate the shape of the
contours of masses, and are obtained by least-squares curve fitting
of the points of each mass contour [24]. The ellipses are used to
guide the selection of a band of pixels. The selection includes the
boundary of the mass, and may also be extended to include portions
from the interior of the mass and from the background region that
surrounds the mass. The size of the band, and the regions included
in the selected band depend on the particular feature that is to be
extracted. This is further discussed in the sections describing each of
the features. In some cases, also depending on the particular feature
desired, the band of pixels selected is converted into a rectangle via
the rubber band straightening transform (RBST) [25]. This is done to

Fig. 3. (A) Contour of a mass obtained by automated segmentation method. (B) Ellipse fitted to the mass, to be used a simplified guiding contour. (C) Band or ribbon of
pixels selected around the guiding contour. (D) Rubber-band straightening transform of the band of pixels selected in (C).

simplify the application of some operations that work on rectangular
arrays. The steps described above are illustrated schematically in
Fig. 3. In this paper the width of the band across the guiding mass
contour was kept fixed. However, a band with a variable width,
proportional to the diameter of the mass, could be more appropriate
and have an effect on the system performance. This may be explored
in a future study.

4.2. Coefficient of variation of edge strength

Mudigonda et al. [26] proposed to use the coefficient of variation
of edge strength (CVES) as a feature for diagnosis of masses. They
defined edge strength based on the variance (�2

w) of the intensity
values of pixels in a line perpendicular to the boundary of a mass

�2
w = 1

M

�M/2�∑

n=�−M/2�
[fi(n) − �w]

2, (1)

�w = 1
M

�M/2�∑

n=�−M/2�
fi(n), (2)

where M is an odd number of pixels, fi(n) are the values of the pixels
considered at the i th boundary point in the perpendicular direction.
The maximum of the variance values is chosen as the edge strength
value of the boundary point being processed. The coefficient of vari-
ation of the edge strength is then computed over all the boundary
points. In this study, the feature was computed from the RBST of a
band of 20 pixels to either side of the guiding contour.

4.3. Contrast

Let �f and �b be the mean intensity values of pixels in two sep-
arate regions labeled foreground and background, respectively. One
definition of the contrast between foreground region and background
region is

Co = �f − �b

�f + �b
. (3)
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In the particular case of a contrast measure for classification of breast
masses, the foreground region corresponds to a mass, and the back-
ground region to the tissue surrounding the mass. Only the pixels in
these regions, that also overlap the boundary ribbon, are included in
the computation of the contrast feature. This features was extracted
from a band of 40 pixels around the guiding contour (20 pixels at
either side of the contour).

4.4. Radial to tangential signature information

This feature is a measure of similarity between three different
edge signatures of a breast mass. One of the signatures, the omni-
directional edge signature, contains all of the edge content in the
mammographic image. The other two signatures, the radial edge
signature and the tangential edge signature, are designed to retain
only the edge content that appears oriented in a certain direction.
In the radial edge signature, only the structures that possess some
edge content oriented in the radial direction are represented. In the
tangential signature, only the structures that possess edge content
oriented in the tangential direction are represented. By comparing
(in terms of a similarity measure) the edge signatures of a mass in
a mammographic image it is possible to obtain an indication of the
characteristics of the mass. This is the rationale behind the SpSI fea-
ture, which is described as follows.

Consider a log-Gabor function [27,28] (see also Ref. [29, Chapter
8]) with a transfer function G. A bank of oriented filters, Fn,k can be
constructed using the following equations:

G(w,wn) = exp(−(log(w/wn)
2)/2(log(�w))), (4)

G(�,�k) = exp(−(� − �k)
2/2�2

�), (5)

Fn,k =G(w,wn)G(�,�k), (6)

where wn is the center frequency of the filters, �w is a term used to
obtain constant-shape ratio filters, G(�,�k) is a Gaussian spreading
function which acts as an angular envelope oriented in direction �k,
�� is the standard deviation of G(�,�k) in the angular direction (used
to control the spread of the envelope). The subscripts n and k indicate
a particular scale (n) and orientation (k) of a filter in the filter bank.

Let I be the 2-D DFT of a ROI containing a breast mass, with the
mass centred on the ROI, and let F−1[·] represent the inverse 2-D
DFT. Then the radial response rn,k, the tangential response tn,k, the
radial edge signature R(i, j), the tangential edge signature T(i, j) and
the omnidirectional edge signature O(i, j) of the ROI are given by

En,k =F−1[IFn,k], (7)

rn,k = |En,k|G(�,�k), (8)

tn,k = |En,k⊥|G(�,�k), (9)

R(i, j) =
∑

n

∑

k

rn,k(i, j), (10)

T(i, j) =
∑

n

∑

k

tn,k(i, j), (11)

O(i, j) = max
n,k

|En,k(i, j)|, (12)

where En,k represents the complex response of one filter for a
certain scale n and orientation k, and k ⊥ is used to indicate the
orientation orthogonal to orientation k. The spatial horizontal and
vertical variables for the location of a pixel are represented by i and
j, respectively.

Once the edge signatures have been computed, the spatial por-
tions of the signatures that roughly correspond to themass boundary
are selected using the simplified contour of the masses (ellipses) to
guide the RBST transform. The width of the selected band of pixels
was chosen to be 20 pixels to either side of the guiding contour.

The 2-D mutual information [30,31], M(X;Y), between images X
and Y is defined in terms of the marginal entropies H(X) and H(Y),
and the joint entropy H(X,Y) as M(X;Y) = H(X) + H(Y) − H(X,Y). Let
RB̂, TB̂, and OB̂, represent the selected portions of the radial, tangen-
tial and omnidirectional signatures, respectively (we use the sub-
script B̂ to indicate that the selected portions correspond to estimates
of the boundary location given by the simplified contours). Then,
the following rule can be used to discriminate spiculated masses: If
M(OB̂,RB̂) >M(OB̂, TB̂), then the mass is most probably spiculated. In
this way, the two measures of mutual information can be used as
features in a classifier. Alternatively, instead of having two features
it is possible to combine them into one dimensionless feature. No-
tice that, since the edge signatures of a mammographic mass are not
independent, none of the mutual information measures can be zero.
Thus, the ratio of the two mutual information quantities can be used
as a combined feature. Let this feature be called spiculation measure
based on signature information:

SpSI = M(OB̂,RB̂)
M(OB̂, TB̂)

. (13)

The larger the value of SpSI for a given mammographic mass, the
most likely it is that the mass is a spiculated mass.

4.5. Spiculation measure based on relative gradient orientation

This feature is a spiculation measure based on the relative gra-
dient orientation of pixels on spiculations, SpGO. Spiculations appear
as linear structures with a positive image contrast. As a result of
their linearity, the gradient directions at image pixels on or close
to the spicules have approximately the same orientation relative to
the spicules. Spicules develop in an approximately radial direction
to the mass (normal to the mass contour), and the gradient at the
pixels on a spicule is orthogonal to the direction of the spicule (i.e.
tangential to the mass contour). This is schematically illustrated in
Fig. 4A, where the contour of the mass is represented by a circle, the
line containing the segment PP′ represents a spicule, and the vector
g represents the gradient direction at point P′ on the spicule. As a
result of the characteristics of the spicules, the angle � between PP′

and the gradient vector g is close to �/2.
The SpGO feature exploits the relationship between the image

gradient direction and the spicules direction to discriminate be-
tween spiculated and non-spiculated masses (a similar approach has
been applied in the past for detection of spiculated lesions, see Refs.
[32,33]). However, instead of measuring the angle �, we measure
another angle, �, between the image gradient vector g, and the line
joining the centroid of themass regionwith the point P′. If themasses
were perfectly circular, the two angles � and � would be equal. In re-
ality, since the masses are not circular, the angles are not the same.
The angle � can be considered an approximation of the angle �, with
the advantage that the boundary point P is not needed to measure
the angle �. This is illustrated in Fig. 4B.

The SpGO feature is defined as the average value of the sine func-
tion of the angle �, computed over a selection of pixels around the
mass. In order to select the pixels for the computation of SpGO a fea-
ture known as the phase congruence (PC) [27,34] is employed. The
PC is a dimensionless measure of edge content which is invariant to
image illumination and contrast. The PC range is [0–1], and thus, it is
possible to use a threshold on the PC image to pick up increasingly
(or decreasingly) significant image features. PC is a very sensitive
feature and can be affected by noise. For this reason we apply it on
the gradient magnitude of the mammographic images instead of ap-
plying it directly to the mammograms. Used in this way, PC allows
the selection of pixels which possess a high probability of belong-
ing to either the spicules of a spiculated mass, or the contour of a
circumscribed mass.
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Fig. 4. (A) In the ideal case of a perfectly circular mass, the angle � between the gradient g and the line PP′ is the same as the angle between g and the line CP′ . (B) In a
real case the mass is not circular. Here the angle � between g and PP′ is different than the angle � between g and CP′ .

A second restriction is imposed on the location of the pixels se-
lected for the computation of SpGO. This restriction consists in lim-
iting the selection to those pixels that belong to a region A around
the mass. The region was defined as a ribbon of thirty pixels to the
exterior of the guiding contour of each mass.

Let ĝi represent the unitary gradient vector at a pixel location P′
i ,

and ĉi represent the unitary vector with the direction of the line CP′
i

joining the centroid of the mass, C, and the selected pixel P′
i . Then,

the SpGO is mathematically expressed as

SpGO = 1
N

∑

i

sin(arccos(ĝi · ĉi)),

i ∈ {A ∩ (PC(x, y) >�)}, i = 1, 2, . . . ,N, (14)

where N is the total number of selected pixels, A represents the
selection-allowed region (see Fig. 3C), PC(x, y) is the PC value of the
pixel at location (x, y), and � ∈ (0–1) is a threshold on the PC that
becomes a parameter of the SpGO feature.

4.6. Measures of the fuzziness of mass margins

These features are measures of the local fuzziness of the mass
margins. A feature similar to the Fzk features described below was
proposed by Varela et al. [35], but in that study the computation of
the feature was strongly dependent on the boundary of the masses.
The method to compute these is more easily implemented and de-
scribed on the polar-variable representation of the ROIs. In this
representation, (x, y)�(r,�), with the centroid of the mass as the
origin of the transformation, r = 1, 2, . . . , 128 (maximum valid radius
in ROIs of size 256×256), and �=1, 2, . . . , 360. Let (i, j) represent the
indexes in the polar-variable representation of the ROIs.

First the derivative (first or second order) in the radial direc-
tion is computed. Next, the pair of points, separated a fixed distance
apart along the radial direction, �i, for which the difference between
derivative values is maximum are found. This is done for each col-
umn of the image matrix (i.e. along the angular variable). The loca-
tion halfway between these points is the location of the strongest
edge in the radial direction, which is used to characterize the mass
margins. The location of the strongest-edge is restricted to a band
of forty pixels around the guiding contour of each mass in order to
reduce possible noise being included in the computation. When the
mass margins are well defined and smooth around the mass (such as
with circumscribed masses), the difference between the strongest-
edge locations is small. If the mass-margins are irregular or jagged
(a spiculated or micro-lobulated mass), the difference between the

strongest-edge locations is large. Thus, if by computing the aver-
age of the radial difference between strongest-edge locations along
the tangential direction, one obtains an indicator or measure of the
fuzziness of the mass margins. Disregarding the treatment of index
values for which the derivatives are undefined, the above procedure
is mathematically expressed as

dk(i, j) = |pk(i − �i, j) − pk(i + �i, j)|, (15)

mk(j) = argmax
i

dk(i, j), (16)

Fzk = 1
J

∑

j

|mk(j) − mk(j + 1)|, (17)

where pk(i, j) represents the k-th order difference in the radial direc-
tion, k = {1, 2}, and J represents the maximum of index j.

5. Classifiers

Three popular classifiers have been employed in the classification
experiments. These classifiers are briefly described below. A detailed
exposition of these and other classifiers can be found in Refs. [7–9].
A recent survey of detection and classification of masses in mammo-
grams, including applications of classifiers can be found in Ref. [10].

5.1. Bayesian classifier

A Bayesian classifier minimizes the classification error probability
by application of the Bayes classification rule. Let x represent a feature
vector, and 	i, with i = 1, 2, represent the classes in a two-class
problem. In this case the Bayes classification rule can be stated as
[9]: If p(x|	1)P(	1) > p(x|	2)P(	2), x is classified to 	1, otherwise, x
is classified to 	2. The a priori class probabilities P(	i), and the class-
conditional probability density functions p(x|	i) can all be estimated
from the available training feature vectors. A common choice for
the class-conditional density functions is the Gaussian or normal
density function, due to its computational tractability and the fact
that, in general, it models adequately a large number of cases found in
practice. However, not all classification problems are well (or easily)
solved by minimization of the classification error. For example, in
some cases it is not easy to estimate the probability distribution
functions involved. It may be preferable to compute decision surfaces
directly by means of alternative cost functions or criteria. The next
classifier discussed is an example of this approach.
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5.2. Fisher's linear discriminant (FLD)

Instead of minimizing the classification error or classification risk,
the FLD maximizes a separability criterion [36]. The criterion adopts
large values if the data is organized in compact clusters correspond-
ing to each class, and the clusters of different classes are well sep-
arated from each other. The approach undertaken by the FLD is to
transform the m-dimensional feature vector x (via a linear transfor-
mation) into another l-dimensional vector y so that the separability
criterion is maximized. FLD does not make assumptions about the
data distribution such as normally distributed classes or equal class
covariances. In practice, the class means and covariances needed to
compute the separability criterion are not known, but can be esti-
mated from the training set. However, although the estimates of the
covariance may be considered optimal in some sense, this does not
mean that the resulting discriminant obtained by substituting these
values will be optimal. Also, in many practical cases linear discrimi-
nants are not suitable. The FLD can be extended for use in nonlinear
classification via a technique known as the kernel trick. This exten-
sion is known as the kernel Fisher discriminant. We shall consider an-
other family of classifiers that also employs the kernel trick, known
as support vector machines (SVMs).

5.3. Support vector machines

Consider a two-class problem with linearly separable data. It is
easy to see that the optimal discriminant function takes the form of
a hyperplane located somewhere between the clusters of data cor-
responding to each of the classes. The optimal position of this hy-
perplane will be dictated by the (relatively) small number of data
samples from each class that are closer to samples from the other
class. Because of this, these samples are called support vectors, and
the classifiers that determine the optimum hyperplane are called
SVMs [37]. When the problem is expanded to multi-class problems
and non-separable data, the methodology to obtain a solution to the
SVM becomes quite complex. For the purposes of this brief intro-
duction, it suffices to say that there are a number of properties and
constraints in the mathematical formulation of SVMs that permit the
use of optimization techniques which ultimately return a solution.
One of such properties is exploited to allow the application of SVMs
to nonlinear classification problems via an implicit mapping of the
original feature vector into a higher dimensional space where linear
classification is effective (linear classification in the higher dimen-
sional space becomes equivalent to nonlinear classification in the
original space). The functions used in the mapping are called Mercer
kernels, and the operation is known as the kernel trick [38]. Typical
kernel functions used in pattern recognition applications include:
polynomials, radial basis functions, and hyperbolic functions. Once
an appropriate kernel has been adopted, the solution to the SVM
problem can proceed as in the linear case.

6. Experiments

Three different featuresets were employed in this study. One of
these sets is used to train the classifiers, and is referred to as the
training set. The training set was produced using guiding contours
based on the ground-truth contours. Two more sets were used to
evaluate the performance of automated diagnosis methods (i.e. com-
binations of segmentation methods, features, and classifiers). One
test set was obtained using the contours produced by the DP-based
segmentationmethod (ID2PBT). The other test set was obtained using
the contours produced by the CRG segmentation method. The whole
set of 349 masses was employed in the tests under a leave-one-
out classification framework. In other words, in order to obtain the
results presented, each classifier was trained with 348 masses and

Table 1
Performance-classification results (expressed as % of success) of different diagnosis
systems

Featureset ID2PBT CRG Percent diff. (%)

FLD Bay. SVM FLD Bay. SVM FLD Bay. SVM

6 63.64 70.09 69.50 71.88 73.33 73.04 12.16 4.52 4.97
7 60.41 59.82 58.06 58.26 60.58 57.97 3.62 1.26 0.16
8 61.03 62.75 63.04 62.46 61.89 62.46 2.32 1.38 0.92
9 64.81 70.38 70.09 71.88 73.04 74.78 10.34 3.71 6.47

10 63.64 61.88 64.81 63.48 62.90 66.38 0.25 1.63 2.39
11 69.50 68.04 69.21 72.46 72.46 72.17 4.17 6.29 4.19
12 66.28 70.97 72.73 71.59 72.46 73.33 7.70 2.08 0.82
13 69.50 67.45 71.55 71.30 69.57 72.46 2.56 3.09 1.26

The percent difference is computed between systems that use ID2PBT and those
that use CRG.
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Fig. 5. Performance of systems in classification of circumscribed masses.

using the feature values from the training set. Then the classifier was
tested on the mass that was “left out” and using the feature values
from each of the test sets. This procedure was repeated, leaving out
a different mass, until the classifiers were tested on all of the masses
in the dataset. The average area overlap measure (AOM, a measure
of agreement between two regions [5,6,39]) between ground truth
and the set of contours of each segmentation method was 0.72 and
0.83 for ID2PBT and CRG, respectively (percent difference of 14.19).

Each diagnosis system consists of one segmentation method
(ID2PBT or CRG), one feature set (including one or more features)
with features based on either the ID2PBT or on the CRG segmenta-
tion methods, and one of three classifiers (Bayesian classifier, FLD,
or SVM). None of the operational parameters of the classifiers were
optimized for the particular dataset. The features were tested indi-
vidually and in combination. The main results of the experiments
are reported in Table 1 and Figs. 5–9, which report the classification
success as a percentage of the total number of masses and also give
the percent differences between systems that employ ID2PBT and
those that employ CRG; and Tables 2–4 which contain the sensitivity
(SE), specificity (SP), positive predictive value (PPV), and negative
predictive value (NPV) of each system, rounded to the nearest half
tenth. Recall that SE is computed as the number of masses correctly
classified as malignant divided by the total number of malignant
masses in the database; similarly, SP is defined as the number of
masses correctly classified as benign divided by the total number
of benign masses in the database. For the results in Tables 2–4 it
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Fig. 6. Performance of systems in classification of non-circumscribed masses.
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Fig. 7. Performance of systems in classification of benign masses.
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Fig. 8. Performance of systems in classification of malignant masses.
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Fig. 9. Performance of systems in classification of all masses.

Table 2
Characterization measures (sensitivity, specificity, positive and negative predictive
values) of systems with FLD

Featureset SE SP PPV NPV

6 0.65, 0.60 0.65, 0.80 0.55, 0.65 0.70, 0.75
7 0.45, 0.45 0.70, 0.65 0.50, 0.50 0.65, 0.65
8 0.60, 0.60 0.60, 0.65 0.50, 0.55 0.70, 0.70
9 0.65, 0.65 0.65, 0.80 0.55 0.65 0.75, 0.75

10 0.65, 0.65 0.60, 0.65 0.55, 0.55 0.75, 0.70
11 0.65, 0.60 0.75, 0.80 0.60, 0.65 0.75, 0.75
12 0.65, 0.65 0.65, 0.75 0.55, 0.65 0.75, 0.75
13 0.65, 0.65 0.70, 0.75 0.60, 0.65 0.75, 0.75

In each case the values before the comma correspond to systems with ID2PBT, and
after the comma to systems with CRG.

Table 3
Characterization measures (sensitivity, specificity, positive and negative predictive
values) of systems with Bayesian classifier

Featureset SE SP PPV NPV

6 0.45, 0.45 0.85, 0.95 0.70, 0.80 0.70, 0.70
7 0.25, 0.25 0.85, 0.85 0.50, 0.50 0.60, 0.60
8 0.35, 0.25 0.80, 0.85 0.55, 0.55 0.65, 0.65
9 0.45, 0.45 0.85, 0.90 0.70, 0.80 0.70, 0.70

10 0.55, 0.55 0.70, 0.70 0.55, 0.55 0.70, 0.70
11 0.55, 0.55 0.80, 0.85 0.60, 0.70 0.70, 0.70
12 0.50, 0.50 0.85, 0.85 0.70, 0.75 0.70, 0.70
13 0.55, 0.55 0.75, 0.80 0.60, 0.65 0.70, 0.70

In each case the values before the comma correspond to systems with ID2PBT, and
after the comma to systems with CRG.

has been estimated that the differences reported between systems
are statistically significant at the 5% level of confidence. The feature
sets used are listed below:

(1) Contrast (Co).
(2) Coefficient of variation of edge strength (CVES).
(3) Measure of the fuzziness of mass margin of first order (Fz1).
(4) Measure of the fuzziness of mass margin of second order (Fz2).
(5) Measure of spiculation based on gradient orientation (SpGO).
(6) Measure of spiculation based on signature information (SpSI).
(7) {Co,CVES}.
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Table 4
Characterization measures (sensitivity, specificity, positive and negative predictive
values) of systems with SVM

Featureset SE SP PPV NPV

6 0.45, 0.40 0.85, 0.95 0.70, 0.85 0.70, 0.70
7 0.15, 0.15 0.90, 0.85 0.45, 0.45 0.60, 0.60
8 0.50, 0.40 0.75, 0.80 0.55, 0.55 0.65, 0.65
9 0.45, 0.45 0.85, 0.95 0.70, 0.85 0.70, 0.70

10 0.50, 0.50 0.75, 0.80 0.55, 0.60 0.70, 0.70
11 0.50, 0.50 0.85, 0.90 0.65, 0.75 0.70, 0.70
12 0.55, 0.50 0.85, 0.90 0.70, 0.75 0.75, 0.70
13 0.55, 0.55 0.80, 0.85 0.70, 0.70 0.75, 0.70

In each case the values before the comma correspond to systems with ID2PBT, and
after the comma to systems with CRG.

(8) {Fz1, Fz2}.
(9) {SpGO, SpSI}.

(10) {Co,CVES, Fz1, Fz2}.
(11) {Co,CVES, SpGO, SpSI}.
(12) {Fz1, Fz2, SpGO, SpSI}.
(13) All features.

Of the six individual features, SpSI was found to be the more success-
ful, and the only one comparable to the combinations of features.
Because of this, and in order to save some space, the numerical re-
sults of the individual features other than SpSI were not included in
the tables.

7. Discussion

The baseline SE of CADx systems for screening mammography is
yet to be defined (CADx systems are not currently used in screening
programs). Some of the best results that have been published in the
literature (see for example Refs. [26,40,41]) correspond to systems
that are still under development and that have employed manually
segmented mass contours in feature extraction. Other studies have
reported on the use of automated segmentation methods [20,39,42].
Some of the best results obtained by the systems in this work over-
lap with those in the latter type of studies. For instance, some of the
systems studied in this work that employ the FLD as a classifier pro-
duced a SE of approximately 0.65, with a SP in the range of 0.65–0.8.
The systems that employ the Bayesian classifier or the SVM achieve
a SE in the range of approximately 0.50–0.55, with a SP in the range
of approximately 0.7–0.9.

Screening mammography has a very low PPV. The specific value
varies according to factors such as age, race, family history of breast
cancer, and others. According to the literature [43–45], the PPV of
mammography is in the range of 0.03–0.35 (this includes all types
of abnormalities, not only masses). This means that on average for
every 100 biopsies (or similar procedure ordered to confirm a diag-
nosis of malignancy based on mammography), only 35 (in the best
case) will confirm the diagnosis; the other 65–97 procedures would
have been performed, in retrospect, unnecessarily. Of the systems
studied in this work, the ones with the highest SE show a PPV in the
range 0.60–0.75, which is roughly the double of the PPV of screening
mammography.

In general, the features studied showed a much higher ability of
classifying the benign masses in the dataset (78–98% correctly classi-
fied) than the malignant masses (0–51%), compare Fig. 7 with Fig. 8.
Since circumscribed masses are in most cases benign, the classifica-
tion success of circumscribed masses was also higher (76–85%) than
the classification success of spiculated and microlobulated masses
(42–67%), compare Fig. 5 with Fig. 6.

When examining individual features (see Figs. 7 and 8), it was
observed that features Co, CVES, and SpGO produce the largest

percentage of benign masses correctly classified, together with the
smallest percentage of malignant masses correctly classified. How-
ever, this behavior is observed only with the use of the Bayesian
classifier or the SVM. In the case of the FLD, the percentages of cor-
rect classification are much more balanced between the two classes.
This indicates that there exists an evident overlap between classes in
each of these features that the nonlinear classifiers resolve in favor
of one class (the one with more instances in the training set) and in
detriment of the other. The FLD, in contrast, compromises between
the two classes and accepts a similar error in both classes. Neverthe-
less, the overall classification success (considering both benign and
malignant masses) is very similar amongst classifiers. The choice of
segmentation method had very little effect on the results of the sys-
tems. These features can be considered robust to differences in the
(average) quality of the segmentation.

In the case of the features Fz1 and Fz2, the success rate of classifi-
cation was also in favor of the benign class. However, in this case the
tendency was not as strong as with the features discussed above. The
choice of a segmentation method had a noticeable effect on the clas-
sification of circumscribed masses and of spiculated and microlobu-
lated masses (see Figs. 5 and 6), but in the overall classification the
effect was only moderate and affecting feature Fz1 more than Fz2.
These features are relatively robust to differences in the quality of
segmentation, specially when they are combined with each other.

The feature SpSI demonstrated the highest discriminant ability of
any single feature (approximately 73% with CRG, and approximately
68% with ID2PBT). The number of benign masses correctly classi-
fied and the number of malignant masses correctly classified were
also more similar than in the cases of the features discussed above.
Roughly, the proportion was 89% of benign masses correctly classi-
fied, and 49% of malignant masses correctly classified, when either
the Bayesian classifier or the SVM was used. A moderate decrease
in these percentages (around 5%) was observed between the sys-
tems with CRG and the ones with ID2PBT. If the FLD was used, the
proportion was 80% and 60% with CRG segmentation, but decreased
to roughly 64% for both classes if the segmentation method was
ID2PBT. This indicates that the discrimination ability of this feature
is affected by the quality of the segmentation, in particular when a
relatively simple classifier is employed. The strength of this feature
is its ability of classifying, relatively well, both the class of circum-
scribed masses as well as the class of spiculated and microlobulated
masses (overall average of approximately 79% circumscribed, 64%
spiculated and microlobulated, see Figs. 5 and 6).

The combination {SpSI , SpGO} with CRG segmentation achieved an
average of approximately 73% masses correctly classified (approxi-
mately 88% benign masses and 51% malignant masses correctly clas-
sified). With ID2PBT the average performancewas 68.4% (80% benign,
52% malignant). These quantities indicate that the performance of
the combined features are roughly the same as the performance of
the SpSI feature alone. The similarity is also observed in terms of the
PPV, which is practically the same for the combined featureset and
the SpSI feature. See Fig. 9 and compare the PPV values of featuresets
6 and 9 in Tables 2–4.

The combination {Co,CVES, Fz1, Fz2} (featureset 10) achieved an
average classification success of approximately 64%, which is only
slightly higher (approximately 1.6% higher) than the performance
achieved by the combination {Fz1, Fz2} (featureset 8). In general
terms, the choice of the segmentation method did not have an ef-
fect on the performance of these features (see Fig. 9). The PPV of
featureset 10 was the same as that of featureset 8. All this indicates
that Co and CVES do not have any positive influence when combined
with Fz1 and Fz2.

In the case of featuresets 11–13, the average correct classification
values of systems with CRG were always slightly higher than those
of systems with ID2PBT (average of 2.5% higher). The performance
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achieved by these featuresets was around 72% (Fig. 9). The PPV was
almost the same between featuresets, and the values were slightly
lower with the FLD than with the Bayesian classifier and the SVM
(0.62, 0.67, and 0.71, respectively).

It can be concluded that in terms of the SP, PPV, and average
classification performance, the feature SpSI is the most effective in
predicting the diagnosis of the masses in the dataset. The combina-
tion of this feature with some of the other features discussed can
produce a slightly higher SE and in some cases (e.g. featureset 11) re-
duce the difference in performance between systems with the same
segmentation method.

8. Conclusions

Ultimately, the objective of breast mass analysis from mammo-
grams is to be able to predict the nature of masses (i.e. to diagnose).
However, it cannot be said that a spiculated mass is definitively ma-
lignant, or that a non-spiculated mass is definitively benign. This
poses a problem for researchers because, from a theoretical point of
view, one can only derive conclusions about the physical character-
istics of the masses that are perceivable from the mammographic
images; thus, diagnosis corresponds to a second degree of analysis
where other types of information (such as the clinical profile and
background of each patient) should be included. In other words,
the information available at the mammographic level only permits
the characterization of masses with some amount of certainty, but,
strictly speaking, not their diagnosis.

The features presented possess, by design, a limited discrim-
ination power. This is because a number of necessary approxi-
mations were introduced to compensate for the uncertainty of
mass-boundary information. For example, the design implicitly
considers all masses to be approximately circular in shape, which
is certainly not accurate. If there were a guarantee that boundaries
extracted by automated segmentation algorithms would comply to
a certain degree of precision with the true boundaries of all masses,
then the design of the features could be adapted to follow such con-
tours. Without such guarantee, the trade-off between performance
and feasibility of implementation will continue to be a factor to
consider while designing features for automated analysis of breast
masses.

Given the characterizationmeasures reported in the previous sec-
tion, it can be concluded that some of the systems studied, and in
particular, those utilizing the feature SpSI , are useful in the diagnosis
of benign masses. This is indicated by the specificity and the NPV
of these systems. A high sp indicates that a system is able to recog-
nize a majority of the negative cases. Furthermore, it is well known
that, due to the prevalence rates of breast cancer, the number of be-
nign breast masses in a given population of screening mammograms
with abnormal findings is predictably much larger than the number
of cancerous masses in the same population. Approximately 80% of
the total of benign masses can be diagnosed correctly by some of the
systems; at the same time, about 50% of the malignant masses will
be misdiagnosed (because of the low SE of the systems). However,
due to the comparatively small fraction of malignant masses, these
numbers indicate that a vast majority of the negative-diagnoses re-
turned by the systems will be correct. If, for example, the fraction
of malignant masses is 0.1, then 90% of the negative-diagnoses re-
turned by the systemswould be correct. With a lower fraction (closer
to the actual scenario) this percentage would be higher.

Regarding the effect of the segmentation method used in CAD
systems, if it is assumed that the systems are to be completely au-
tomated, then the results obtained by systems with ID2PBT seg-
mentation are to be considered as the baseline performance. The
results of the systems with CRG can then be used to obtain some
conclusions as to what would happen if there is an improvement in

the performance of the segmentation method. Due to the use of the
simplified contours in the feature extraction procedure, a 14% im-
provement in the quality of the segmentation is translated into only
about one-third of that improvement in the final task of diagnosis of
the masses (compare the percent difference values in Table 1 with
the percent difference of the segmentation task between segmen-
tation algorithms, which is 14.19%). An average segmentation im-
provement of 14% (absolute difference of 0.11 in the AOM) is hard to
achieve. This improvement would not be sufficient to justify a fea-
ture extraction procedure based directly on the contours extracted
in an automated fashion (a larger improvement is needed). Thus, one
can conclude that given a scenario of limited resources, these would
be well employed in the design of classification features with more
discriminative power and that are more robust to inaccuracies of
the contours extracted by automated methods (since it is probable
that these inaccuracies will still be significant even if a very efficient
segmentation method is used).

Regarding the operation of the classifiers, the distribution of the
classification error indicates that in order to increase the sensitiv-
ity of the systems, perhaps the classifiers could be trained using a
scheme that penalizes the misclassification of the instances in the
malignant class or otherwise accepts a very small classification er-
ror in this class, independently of the overall error. Another possi-
bility is to adopt more advanced classifiers that those employed in
this study. For instance, Mu et al. [40] have proposed a nonlinear
pairwise Rayleigh quotient classifier that is able to improve on the
performance of some types of SVMs. Similarly, Nandi et al. [41] have
applied genetic programming combined with feature selection to the
classification of breast masses, with very promising results.

As a concluding remark it should be pointed out that, out of the
features studied, the most effective feature (SpSI) is different from
the other features in that it does not attempt to compute an absolute
measure (of spiculation), but rather, it compares the evidence indi-
cating that a particular mass may be spiculated with the evidence
indicating that it may be not. In a sense, the feature is the result of
a classification performed based on the information contained in a
single mass. Perhaps this is what makes SpSI distinctly better than
the other features presented, and it may be a possible line of re-
search to follow in future work regarding the design of features for
characterization of breast masses.
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